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ABSTRACT

The forces acting on yawed smooth and rough circular

cylinders in oscillating flow have been investigated for the

purpose of determining the appropriate force-transfer coeffi-

cients and the applicability of the "independence principle."

The results have shown that the flow about each cylinder is

unique and the independence principle does not hold true over

the range of Reynolds numbers and Keulegan-Carpenter numbers

covered by the investigation. It has further been shown that

Morison's equation predicts the measured force with the same

degree of accuracy as that for the normal cylinder provided

that the force-transfer coefficients appropriate to each yaw

angle, Reynolds number, Keulegan-Carpenter number, and the

relative roughness are used.
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I. INTRODUCTION

The study of time dependent flow about yawed cylinders is a topic which
presently has great interest, both theoretically and practically. Of the
great variety of time~dependent flows about yawed cylinders, the wave motion
and sinusoidally oscillating flow are of such importance as to demand imme-~
diate investigation. For lack of adequate information concerning time-
dependent flows, industry is often forced to adopt steady flow relations to
time-dependent flow situations. This research proposes to investigate the
forces acting upon yawed circular cylinders immersed in sinusoidally-oscil-
lating planar flow and to examine the validity or limitations of the present
methods of analysis,

In 1950, Morison et al, [Refs. 1 and 2] introduced an equation for calcu~
lating the in-line force acting on a vertical pile due to unbroken surface
waves, For a cylinder of diameter D, the force per unit length is expressed
as

F=0.50D CyU|U| + 0,25 mpD?C_(DU/Dt) (1)

where U represents the incident flow velocity; C 9’ the drag coefficient; and
Cm’ the inertia coefficient, The coefficients Cm and C q vere considered time-
invariant and constant along the length of the cylinder. Morison's paper was
intended as a preliminary report with follow=-on studies to be done on other
structures in various wave actions. Morison et al. did not consider the
contributions of transverse forces and vortex shedding in the calculation of
the in-line forces.

Attempts have been made to extend this rather simple relationship to
far more complex situations such as cambined wave and current flow, hydro-

elastic oscillations, and yawed cylinders. Heideman et al, [Ref. 3] studied




the validity of Morison's equation using ocean data. Although Heideman et
al. concluded that Morison's equation was satisfactory for normal cylinders,
the utilization of an equation unproven even under ideal flow situations
[Ref. 2] to analyze ocean data so as to prove the validity of the equation
is not a very meaningful exercise, (for additional details see Ref. 4).

It is obvious that there is a great need for an idealization of the
problem, or an experiment which is more manageable (e.g., a sinusoidally
oscillating planar flow). Only in this way can all the complex interactions
be separately taken into account.

Engineers faced with the problem of dealing with wave forces on yawed
members and having no other recourse drew upon previous work with steady
flow. Hoerner [Ref. 5] proposed the "independence principle", which stated
that the normal pressure forces are independent of the tangential velocity
for subcritical values of Ren, where Ren is the Reynolds number based upon
the flow velocity normal to the cylinder. This principle allowed the decom-
position of forces and velocities into normal and tangential components and
the neglecting of the tangential components, Bursnall and Loftin [Ref. 6]
found that the independence principle does not apply to the critical and
transcritical flow regimes. Norton et al. [Ref, 7] found that the inde-
pendence principle does apply to post-critical as well as subcritical flow,
but not to the critical and transcritical regions in between, Thus, recent
research has shown that the independence principle applies when the boundary
layer is wholly laminar (Hoermer) or wholly turbulent (Norton), but its use
in the critical and transcritical regions is uncertain.

The designers of offshore structures were thus led to adopt the inde~
pendence principle for the wave force calculations, and in doing so, to
generalize the Morison equation. This has been accepted practice in industry

13
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for lack of a better relation. It can be asked what would be anticipated
for oscillating flow or waves on the basis of what is known for steady flow,
The instantaneous Reynolds number in such a flow will vary fram --Rermx to
+Remx during a complete flow cycle. It could be postulated that the bound-

ary layer would, at times, be fully laminar; at other times fully turbulent;
and the rest of the time be in transition. In light of this, it is rather
doubtful that the independence principle applies at all to oscillating or
wave flow,

The study of forces acting on yawed cylinders can be carried out
either by oscillating a yawed cylinder in a tank, or using smll anmplitude f
waves in a laboratory channel, oscillating the flow about a fixed cylinder,

or by using ocean data if available., Oscillating the cylinder has proven

to be impractical [Ref. 8] because of difficulties of accounting for the [

inertial force acting on the body, producing repeatable oscillations, ,‘
vibrations in the system, and difficulties in measuring the in-line and
transverse forces simu caseously. Waves have relatively more complex

flow kinematics due to the orbital motion of particles and the decay of

wave amplitude with depth. Ocean data are not available for such a study.

Oscillation of the flow past the cylinder has proved to be the best method
[Refs. 9 and 10].

The primary objective of this investigation was to study the forces
exerted by a sinusoidally oscillating planar flow on yawed circular cyvlinders
to determine whether the independence principle is applicable or not. If so,
the force transfer coefficients calculated by Fourier analysis using the |

normal velocity component should reduce identically to the normal cylinder

case at corresponding values of K, Re, and k/D. If the independence prin-

A——— e

cipal does not apply, it is desired to determine what the coefficients are
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as functions of yaw angle, roughness ratio k/D, Re, and K. It would also
be necessary to determine how well Morison's equation works with the new
force coefficients.

With the foregoing objectives in mind a detailed inwvestigation has
been undertaken using smooth and rough cylinders of nominal 6 inch, 4.5
inch, and 3 inch diameters at yaw angles of 45 degrees, 60 degrees, and 90
degrees (as measured between the ambient flow direction and the cylinder

axis). The relative sand-roughness for all rough cylinders was k/D = 1/100,

II., EXPERIMENTAL FQUIPMENT AND TEST CYLINDERS

The equipment consists of a large U-shaped oscillating flow tunnel.
It was first constructed in 1975. Since then the length of the tunnel has
been increased from 30 feet to 35 feet and its height from 16 feet to 22
feet. The cross-section of the 35 ft long horizontal test section has been
increased from 3 £t by 3 ft to 3 ft by 4.7 ft. Furthermore, the oscillation
mechanism has been completely modified so that mono-harmonic oscillations
can be generated and maintained indefinitely at the desired amplitude. For
this purpose the output of a 2 Hp fan was connected to the top of one of
the legs of the tunnel with a large pipe (D = 3 ft). A small butterfly
valve, placed in a special housing, outside the tunnel, between the top of
the tunnel and the supply line, oscillated continuously and sinusoidally at
a frequency equal to the natural frequency of the oscillations of water in
the tunnel. The oscillation of the valve was perfectly synchronized with
that of the flow through the use of an electronic feedback control system,
coupled to a DC motor oscillating the valve plate. The circuit maintained
the period of oscillations of the valve within 00,0005 seconds. The amplitude

of the oscillations was varied by constricting or enlarging an orifice at the
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exit of the fan. The flow oscillated at a given anplitude as long as
desired, (see Fig. 1 for a picture and schematic drawing of the tunnel).

The velocity in the tunnel has been determined through the use of
a capacitance wire, hotfilm anemmeter, perforated ball, magnetic flow
meter, an accelerometer (which measured the instantaneous acceleration of
flow in the test section), and by visual measurement of the water level
at its heighest and lowest points in the legs of the tunnel. It is safe
to state that the velocity could not have been measured more accurately,
The only other means by which the wvelocity could have been measured was
the use of a laser device, In view of its cost and in view of the fact
that the other means of measurement yielded the ambient wvelocity within
2 percent of each other it was decided to forsake the laser system.

Mounting pads for the strain gage housings were placed on opposite
sides of the tunnmel in such a manner so as to accommodate the yawed cyl-
inders. A separate mounting had to be installed for each angle of yaw,
The mounting pad on one side of the tunnel was fitted with an adjustable
slide so that the pad could be moved horizontally small distances to
exactly match the cylinder length. The force transducers and housings
were unchanged from descriptions in [Refs. 9 and 10].

The cylinder ends, cut exactly at the desired angle of yaw, were
parallel to the tunnel walls with a 1/32 inch gap at each end. This gap
was filled with a soft foamy material glued to the ends of the cylinder,
Ball bearings were mounted in the ends of the cylinder with the outer
bearing faces flush with the face of the cylinder. Careful calibration
and extensive testing proved that this mounting system allowed accurate
and repeatable recording of the normal and transverse forces upon the
test cylinder,
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Fig. 1 A schematic drawing and picture of the water tunnel




The calibration of the cylinder was first conducted in a vertical

direction, since yaw would not affect the total force in this direction.
Weights were hung from the center of the cylinder, and calibration factors
were obtained by converting the sum of the signals of two force trans-~
ducers to either pounds/mm or pounds/volt. The strain gages were found
to be exactly linear throughout the range of expected forces. Ideally,
the horizontal forces normal to the cylinder should be related to the
streamwise force by the sine of the yaw angle o (as measured between the
cylinder axis and the ambient flow direction). A system of supports and
pulleys allowed applying horizontal force at the center of the cylinder and
normal to it. The sum of the outputs of the two transducers was recorded
on the strip chart recorder, establishing the necessary relationship between
the normal in-line force I and the total electrical output of the gages.
The same gages were used to measure the lift force or the in-line force
by rotating the gages 90 degrees, It is easy to show that the calibration
factor for the 1lift force (here in the vertical direction, up or down),
expressed in terms of pounds or millimeter deflection, is sina times the
calibration factor for the in-line force. This proved to be true experi-
mentally also and demonstrated independently the validity of the measure-
ment technique. -

The following cylinder sizes and angles were tested:
90 degrees, 6.5 in. and 6 in., smooth and rough;
60 degrees, 6.0 in., 4.45 in., and 3 in., smooth and rough;
45 degrees, 6 in., 4.45 in., 3 in., smooth and rough.
Relative sand roughness of k/D = 1/100 was used for all rough cylinders.

18
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ITII. DATA ACQUISITION AND PROCESSING

The data were acquired using an HP-3052A automatic data acquisition
system. The system consisted of an HP-3495A 20 channel scanner and an
HP-3437A system voltmeter, both controlled by an HP-9845B desk top can-
puter. The in-line and transverse force signals, originating as a
voltage fram the strain gages, was then amplified and sent to the strip
chart recorder. This amplified signal was also sent to the scanner as
one channel of data. The flow amplitude signal, originating from a
differential pressure transducer, was similarly amplified and sent to
both the strip chart recorder and the scanner as another channel of data.
The strip chart data was maintained as a visual record of the flow ampli-
tude and force. The scanner switched between the two channels at desig-
nated intervals when triggered by the voltmeter. The voltmeter read each
one of these voltage values and transferred them to the camputer for
immediate calculation of the governing parameters or for further trans-
fer to floppy disc storage to allow for analysis at a later time.

At least six cycles of in-line force data, digitized at 0.5 degree
intervals, were acquired with the HP-3052A - HP-9845B system. The data
were then averaged to give one cycle fram which the governing parameters

were calculated. Ten cycles of transverse force data, digitized at one

degree intervals, were acquired with the same system. These data were not

averaged before calculating the governing parameters.

The use of the data acquisition system proved to be highly beneficial

for a number of reasons. The calculated parameters were available on a
real time basis, allowing for detailed study of ancmalies in the force

patterns. Taking data over a larger number of cycles removed more of the
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small randamess of the flow forces. This was particularly valuable for

analyzing the transverse force data.

IV. GOVERNING PARAMETERS

Data reduction for the in-line forces is based on Morison's equation
using the normal component of velocity. The derivation of the governing
parameters is described in detail in [Refs. 2, 9-11]. Here only a brief
description of the parameters will be given.

The force per unit length of a cylinder of diameter D is represented

by Morison's equation as

2
C= 2F2 = "T C,sind - Cdlcoselcose (2)
m

For an oscillating flow represented by U = -Umcose with 6 = 2wt /T,
where Um represents the maximum flow velocity, the Fourier averages of Cm

and Cd are given by

2K2"Fsme
°m='§f s 3)
0 m

C=-—/ (4)
pDU

where Fm represents the measured force.

and

The transverse force data are represented by the normalized rms
value of the measured 1ift force (C].rms)' The 1lift data were also analyzed
using a Fourier transform to obtain frequency information. The first 15

Fourier coefficients, with corresponding magnitude and phase angles, were




calculated. Finally, Cd’ Cm’ and clms were plotted in terms of the
Keulegan-Carpenter number K, the 'frequency parameter' B = Re/K = Dz/v'r,
the relative roughness k/D, and the yaw angle «.

V. EXPERIMENTAL RESULTS

A. CYLINDERS AT S0 DEGREE YAW ANGLE

Attampts to achieve as high Reynolds numbers as possible in conducting
wind-tunnel and water-tunnel experiments invariably give rise to wall-
interference effects which, of course, influence whatever measurements are
made. There are several blockage correction formulas for steady flows
which might be used so that the wall-interference effects on the calculated
force coefficients might be minimized. Unfortunately, none of these formulas
could be used in the present study for no one has damonstrated that the
blockage effects in oscillatory flows are identical to those experienced in
steady flows [Ref. 9].

In view of the foregoing it was decided to repeat the experiments
reported in 1976 [Refs. 9 and 10] with a 6.5 inch smooth and sand-roughened
cylinder (k/D = 1/100). Originally the experiments were conducted in the
first version of the U-shapped water tunnel which had a length of 30 ft, a
height of 16 ft, and a cross-section of 3 ft by 3 ft. Subsequently, the
length of the tunnel has been increased from 30 ft to 35 ft and its height
fram 16 £t to 22 ft. The cross-section of the 35 ft long horizontal test
section has been increased from 3 ft by 3 ft to 3 ft by 4.7 ft, as noted
earlier. Finally, the data acquisition system and other refinements have
been incorporated into the system. Experiments with the 6.5-inch cylinder
have been repeated following each change in the tunnel.
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The drag and inertia coefficients obtained in 1976 with a D = 6.5 in.
smooth cylinder are shown in Figs. 2 and 3. The data obtained with the
same cylinder in the larger tunnel in 1981 and in 1982 are shown in Figs.

4 through 7. Finally, the entire data for Cd and Cm are shown in Figs. 8
and 9. Evidently, the data obtained with the enlarged tunnel agree
extremely well with those obtained in 1976 [Ref. 9]. No clearer proof
can be presented than these figures in eliminating the possibility of any
blockage effect on the data reported previously by Sarpkaya [Refs. 9 and
10], particularly at large values of K and Re.

Figures 8 and 9 show that the only difference between the 1976 data and
those obtained in 1981 and 1982 is the occurrence of two distinct modes of
vortex shedding for a given K in the region of K values from 9 to 16, The
observations of the in-line and transverse-force traces over several hundred
cycles of flow oscillation in the said region of K values (the drag-inertia
dominated regime) have revealed that the dominant mode of flow is as shown
in Fig. 10a. For this mode, the in-line force trace does not exhibit large
second order oscillations and the transverse force is both smll and irregular,
In other words, at such large Reynolds numbers (Re varied from about 47,000
to 85,000 as K varied from 9 to 16) the spanwise coherence of vortices is
not perfect. The in-line force corresponding to this dominant mode yields
drag and inertia coefficients identical to those shown in Figs. 2 and 3
(the 1976 data). From time to time, however, the spanwise coherence of the
vortices improves dramatically and the the in-line and transverse forces
change to those shown in Fig. 10b. In this second mode of flow, the in-line
force exhibits large oscillations and the magnitude of the transverse force
increases dramatically. This second mode gives rise to the larger drag and
smller inertia coefficients shown in Figs. 8 and 9 in the region 9 < K < 186,




t

Thus, it is clear that one can obtain two different drag coefficients and

hence two different in.rtia coefficients for the same K (in the drag-

inertia dominated regime), depending on the flow mode., The occurrence of
the second mode in the drag-inertia dominated regime for Reynolds numbers
smaller than about 30,000 is quite common [Ref. 9]. As the Reynolds number
increases, however, the first mode becomes the dominant mode. Then the
variation of the transverse force with time becomes a non-stationary random
process.,
It is clear from the foregoing that unique values of C 1 S and Clms
do not exist for certain values of K and Re, It is also clear that the
orbital motion of the fluid particles and the omidirectionality of the
waves and currents in the ocean environment give rise to the first flow |
mode and result in smaller drag and lift coefficients. In laboratory
experiments the coherence length emerges as an important parameter,
particularly in the drag-inertia dominated regime. It is thus possible to
choose and L/D radio for which the flow will be in the first or second mode
for a given combination of K and Re in the drag-inertia dominated regime.
The drag and inertia coefficients obtained with a D = 6.5 inch rough
cylinder (k/D = 1/100) in 1976 are shown in Figs. 11 and 12. The data
obtained with the same cylinder in 1981 and 1982 are shown in Figs. 13
through 16. Finally, a composite plot of the entire data is shown in Figs.
7 and 18, Evidently, all three sets of the data agree extremely well
and show that tunnel blockage did not play any role on the data reported
previously by Sarpkaya [Refs. 9 and 10] for smooth as well as rough cylinders.
The observations of the in-line and transverse force traces for the
rough cylinder have shown that only the second flow mode occurred in the

drag-inertia dominated regime, Evidently, roughness increases the coherence
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length, giving rise to larger drag coefficients and smaller inerti coeffi-

cients in the drag-inertia dominated regime. Additional work is needed
to delineate more clearly the role played by the coherence length and
surface roughness in the variation of the force-transfer coefficients.
The drag and inertia coefficients obtained with a D = 6 inch nominal
diameter smooth and rough cylinder are shown in Figs. 19 through 22. The
results are quite similar to those presented earlier for the D = 6.5 inch

smooth and rough cylinder.

B. CYLINDERS AT 60 DEGREE YAW ANGLE

The drag and inertia coefficients obtained with 6 inch, 4.5 inch, and
3 inch (nominal diameter) smooth and rough cylinders (k/D = 1/100) are shown
in Figs. 23 through 34 as a function of K (K = Um'I‘/D). Two facts are
immediately apparent. First, the drag coefficient does not exhibit multiple
values in the drag-inertia dominated regime. In general, the drag coefficient
increases to a peak and then decreases gradually with increasing K and Re.
In fact, the observations of flow about the cylinder with tracer particles
have shown that the vortices are far from coherent. Secondly, the inertia
coefficient is larger than 2.0 for small values of K, giving the first

indication that the independence principle is not probably valid.

C. CYLINDERS AT 45 DEGREE YAW ANGLE

The drag and inertia coefficients obtained with 6 inch, 4.5 inch, and
3 inch (nominal diameter) smooth and rough cylinders (k/D = 1/100) are shown
in Figs. 35 through 46 as a function of K. Aside from a relatively larger
scatter, the overall characteristics of the data are quite similar to those

for the 60 degree vaw angle.
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D. OOMPARISON CF THE DRAG AND INERTIA CCOEFFICIENTS

The drag coefficient for three smooth cylinders at yaw angles of 90,
60, and 45 degree are shown in Figs. 47 through 49. Evidently, had the
independence principle been valid, the three sets of data corresponding to
three yaw angles would have collapsed into a single set, thus rendering C

d
versus K relationship independent of the yaw angle (at least within the

range of the test parameters and experimental errors).

The inertia coefficient for the three smooth cylinders at yaw angles
of 90, 60, and 45 degree are shown in Figs. 50 through 52. Evidently, Cm
varies significantly with the yaw angle and the independence principle is
not valid within the range of test parameters. The inertia coefficients
based on the normal component of acceleration are significantly larger than
tbose for the normal cylinder (yaw angle = 90 degrees) at the corresponding &
Reynolds numbers and Keulegan-Carpenter numbers. Finally, the inertia
coefficient for the yawed cylinders does not exhibit the usual "inertia
crisis" associated with the normal cylinder. In fact, the inertia coeffi-
cient for the yawed cylinders varies gradually with K and remains 25 percent
to 50 percent larger than that for the normal cylinder. Thus, it is clear
fram the foregoing that the normal force acting on a yawed cylinder is
significantly underestimated through the use of Morison's equation, inde-
pendence principle, and the drag and inertia coefficients appropriate to the
normal cylinder.

The drag and inertia coefficients for the three rough cylinders at yaw
angles of 90, 60, and 45 degree are shown in Figs. 53 through 58. Evidently,
roughness plays an important and, oddly enough, a unifying role on the drag
coefficient. This is somewhat anticipated on the basis of the fact that

roughness precipitates earlier transition and greater incoherence in the
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flow about a yawed cylinder, thereby creating conditions more favorable

to the independence principle. Figures 53 through 55 show that the inde-
pendence principle for rough cylinders is almost valid with the exception
of the drag-inertia dominated regime. However, the inertia coefficient

for rough cylinders depends strongly on the yaw angle (see Figs. 56 through
58). Thus, it appears that the independence principle or the cosine law,

as it is sometimes called, is a gross simplification of the behavior of

flow in the near wake. Omne may, therefore, conclude that the Fourier-
averaged drag and inertia coefficients, based on Morison's equation, are
unique for each angle of yaw, Reynolds number, Keulegan-Carpenter number,

and the relative roughness.

E. EVALUATION OF MORISON'S EQUATICON FOR YAWED CYLINDERS
Since the independence principle cannot be applied to yawed cylinders '

in sinusoidally oscillating planar flow, it is necessary to determine if the

Fourier-averaged coefficients calculated fram the normal forces will predict

the forces exerted on the cylinder when Morison's equation is used together

with the experimentally determined C d and Crn values, appropriate to each yaw

angle. In general it was found that the Morison equation predicts the forces

on the yawed cylinder with the same degree of accuracy as the 90 degree case.

Figures 59 through 63 show comparisons of the measured and calculated forces

for the 90 degree 6-inch rough cylinder at K values of 6.86, 10.18, 11.88,

16.15, and 22.56. Examples for the 60 degree case are shown in Figs. 64

through 66 for K values of 6.89, 16.83, and 23.94. Finally, Figs. 67 through

71 show the camparison of the measured and calculated forces for the 45-degree

case for K values of 7.90, 10.05, 12.50, 16.35, and 24.04. It is clear from

these conparisons that when Cm and Cd are known for a given angle of yaw,
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Morison's equation will predict the normal forces on cylinders at angles

of yaw as well as the nomal cylinder case.

F. TRANSVERSE (LIFT) FORCES

The lift force data are presented in terms of the normalized rms value
of the measured lift force. Figures 72 and 73 show the lift coefficients
for the 6-inch smooth and rough cylinder, respectively, for the three yaw
angles. The lift coefficient for the 60 degree and 45 degree yaw angles
is considerably smaller than that for the normal swooth cylinder. Further-
more, the data for the 60-degree and the 45-degree cases exhibit great deal
of scatter. This is primarily due to the fact that the coherence length is

considerably smaller and the flow exhibits numerous modes, leading to a !

non~stationary random process as far as the vortex shedding is concerned. '
For the rough cylinder, the lift coefficients are relatively larger ‘

for all values of K. However, the lift coefficient for the 60-~degree and

45-degree cases is about half of that for the normal cylinder for values

of K larger than about 15. 1he data for all other smooth and rough cylinders

showed similar trends and will not be discussed here further.

G. FOURIER ANALYSIS OF THE LIFT FORCE
Calculation of the first fifteem Fourier coefficients, magnitudes, and
phase angles of the 1lift force only reinforced the fact that the lift force

is a highly random process. Except for low values of K (where second harmonic

was dominant) there was no clear daminance of any particular harmonic. In

fact, it showed that a number of harmonics were present. Neither was any

trend visible in the phase angle variation. Figures 74 through 93 show sample |
data plots, and harmonics for the 45-degree 6~inch rough and smooth cylinders

ot e DAt . e




l

at various K values. The existence of a large number of harmonics in the

1ift force -ccounts for most of the scatter in clms’

VI, CONCLUBIONS

The forces acting on yawed smooth and rough circular cylinders in
simusoidally oscillating planar flow have been investigated extensively
and the following conclusions have been reached:

1. The independence principle does not apply over the range of K
and Re values investigated. The drag and inertia coefficients for the
45~degree and 60-degree smooth and rough yawed cylinders differ signifi-
cantly fram those for the 90-degree normal cylinder.

2. The Fourier-averaged drag and inertia coefficients, based on
Morison'’s equation, and the rms value of the lift coefficient are unique
for each yaw angle, Reynolds number, Keulegan-Carpenter number, and the
relative roughness.

3. When the drag and inertia coefficients are calculated from the
measured force for the yawed cylinder, in a manner similar to that used
for the 90-degree cylinder, Morison's equation predicts the measured force
with the same accuracy as that for the 90-degree cylinder,

4. The normal force acting on a smooth or rough yawed cvlinder is
significantly underestimated through the use of the independence principle
and the drag and inertia coefficients appropriate to the normal cylinder.

5. Extensive flow visualization about norral and yawed cylinders has
shown that the cylinder inclination significantly decreases the spanwise
coherence and the kinematics of flow about yawed cylinders are considerably
more complex than those for a normal cylinder,

i




6. The lift force is a non-stationary random process and contains a |
large number of harmonics. In general, C1 ms for yawed cylinders is
considerably smller than that for the normal cylinder,

7. The data presented herein should form the basis of future E
calculations for the forces acting on yawed cylinders. Additional data
at higher Reynolds numbers and the understanding of the role played by
the coherence length will add significantly to the quantitative and »

qualitative understanding of flow about yawed cylinders. |
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